国产在线国偷精品免费看-97久久香蕉国产线看观看-色婷婷亚洲一区二区三区-国产一区二区三区影院

  • 長(zhǎng)沙理工大學(xué)
  • 云就業(yè)平臺(tái)
  • 后臺(tái)管理
□ 當(dāng)前位置: 首頁(yè)師資隊(duì)伍教師名錄 > 正文

其他

張曌

發(fā)布日期:2025年07月15日 來源: 作者:

個(gè)人簡(jiǎn)介

張曌,女,漢族,湖南衡陽(yáng)人,中共黨員,博士,碩士生導(dǎo)師。2023年6月畢業(yè)于北京郵電大學(xué),獲電子科學(xué)與技術(shù)專業(yè)工學(xué)博士學(xué)位,同年入職長(zhǎng)沙理工大學(xué),從事教學(xué)科研工作。主要研究方向?yàn)槿斯ぶ悄芩惴ㄑ芯俊⒅悄芄I(yè)檢測(cè)、網(wǎng)絡(luò)安全、故障感知與診斷等,在國(guó)際權(quán)威SCI期刊上發(fā)表多篇學(xué)術(shù)論文。歡迎對(duì)電子信息技術(shù)及人工智能理論與應(yīng)用領(lǐng)域感興趣的同學(xué)加入課題組,一起努力,共同進(jìn)步!

主要研究領(lǐng)域

人工智能理論及其應(yīng)用、智能工業(yè)檢測(cè)、網(wǎng)絡(luò)安全

教學(xué)情況

主要承擔(dān)《傳感器與自動(dòng)測(cè)量》等課程教學(xué)

科研項(xiàng)目

1.湖南省水利科技項(xiàng)目,XSKJ2024064-37,湖南省水土保持遙感影像智慧解譯,2024/10-2025/12,在研,主持

代表性論文

[1]Zhang Z, Li Q, Liu S, et al. Casual Inference-Enabled Graph Neural Networks for Generalized Fault Diagnosis in Industrial IoT System[J]. Information Sciences, 2025, 694:121719.

[2]Zhang Z, Zhang Y, Li H, et al. Federated continual representation learning for evolutionary distributed intrusion detection in Industrial Internet of Things[J]. Engineering Applications of Artificial Intelligence, 2024, 135: 108826.

[3]Zhang Z, Zhang Y, Guo D, et al. SecFedNIDS: Robust defense for poisoning attack against federated learning-based network intrusion detection system [J]. Future Generation Computer Systems, 2022, 134: 154-169.

[4]Zhang Z, Zhang Y, Guo D, et al. Communication-efficient federated continual learning for distributed learning system with Non-IID data[J]. Science China Information Sciences, 2023, 66(2): 122102.

[5]Zhang Z, Zhang Y, et al. A scalable network intrusion detection system towards detecting, discovering, and learning unknown attacks[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(6): 1649-1665.

[6]Zhang Z, Zhang Y, Niu J, et al. Unknown network attack detection based on open‐set recognition and active learning in drone network[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(10): e4212.

[7]Zhang Z, Yong Z, Yinglei T, et al. Adaptive transfer learning framework for dense prediction of human activity recognition[J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(5): 1.

聯(lián)系方式

E-mail: zhangzhao@csust.edu.cn

通訊地址:湖南省長(zhǎng)沙市天心區(qū)萬家麗路二段960號(hào)