長(zhǎng)沙理工大學(xué)學(xué)術(shù)活動(dòng)預(yù)告
報(bào)告承辦單位: 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報(bào)告題目: Boundary stabilization for wave equations with Wentzell boundary conditions
報(bào)告內(nèi)容: In this talk, we talk about the asymptotic behaviours of solutions for linear wave equations with frictional damping only on Wentzell boundary, but without any interior damping. Making some elaborate and subtle analysis of an associated auxiliary system, we obtain an ideal estimate of the resolvent of the generator of the system along the imaginary axis. This enables us to prove that the energies of the system decay polynomially. Our energy stability result presents a solution, in the linear case, to the problem proposed by Cavalcanti et al. (2007), which was put forward as a “hard problem” due to the lack of interior damping.
報(bào)告人姓名: 李嬋
報(bào)告人所在單位: 杭州電子科技大學(xué)
報(bào)告人職稱/職務(wù)及學(xué)術(shù)頭銜: 講師/博士
報(bào)告時(shí)間: 2020年12月10 日上午 10:00-11:00
報(bào)告方式: 騰訊會(huì)議929 986 183
報(bào)告人簡(jiǎn)介: 李嬋,現(xiàn)任杭州科技大學(xué)教師。本科畢業(yè)于蘭州大學(xué)數(shù)學(xué)學(xué)院,博士畢業(yè)于復(fù)旦大學(xué)數(shù)學(xué)科學(xué)學(xué)院。研究方向?yàn)榉蔷€性偏微分方程的理論研究,尤其是有界區(qū)域上波動(dòng)方程的鎮(zhèn)定性問(wèn)題。相關(guān)研究論文發(fā)表于JDE等國(guó)際知名數(shù)學(xué)雜志。