国产在线国偷精品免费看-97久久香蕉国产线看观看-色婷婷亚洲一区二区三区-国产一区二区三区影院

學(xué)術(shù)動態(tài)

陳玉明:具有抗原性的腫瘤免疫系統(tǒng)的復(fù)雜動力學(xué)
2021年05月21日 | 點(diǎn)擊次數(shù):

報(bào)告承辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院

報(bào)告題目: 具有抗原性的腫瘤免疫系統(tǒng)的復(fù)雜動力學(xué)

報(bào)告人姓名:Yuming Chen ( 陳玉明)

報(bào)告人所在單位:加拿大羅瑞爾大學(xué)

報(bào)告人職稱: 教授,博士生導(dǎo)師

報(bào)告時間:北京時間2021526日(星期三)上午10:00-11:00

騰訊會議號碼:425 930 835

報(bào)告人簡介陳玉明教授分別于1991年和1994年從北京大學(xué)獲應(yīng)用數(shù)學(xué)學(xué)士學(xué)位和碩士學(xué)位,并于2000年從加拿大約克大學(xué)(York University)獲理學(xué)博士學(xué)位,20009月至20016月在加拿大阿爾伯塔大學(xué)(University of Alberta)做博士后。從20017月起,一直任教于加拿大羅瑞爾大學(xué)(Wilfrid Laurier University)?,F(xiàn)為該校數(shù)學(xué)系正教授、博士生導(dǎo)師。主要研究興趣為動力系統(tǒng)和泛函微分方程理論及其在生物數(shù)學(xué)和神經(jīng)網(wǎng)絡(luò)中的應(yīng)用。美國數(shù)學(xué)評論及德國數(shù)學(xué)評論評論員,International Journal of Applied Mathematics and Engineering Sciences, Journal of Applied Mathematics, Mathematics in Applied Sciences and Mathematics等雜志的編委。已在包括 SIAM Journal on Mathematical Analysis, Nonlinearity, Journal of Differential Equations, Physica D, Proceedings of the American Mathematical SocietyMathematical Biosciences, Neural Networks等國際著名刊物發(fā)表論文120余篇,其成果被同行廣泛引用,曾獲安大略省科技與創(chuàng)新部早期研究者獎。主持了4項(xiàng)加拿大國家自然科學(xué)與工程理事會(NSERC)科研基金項(xiàng)目,參與了3項(xiàng)中國國家自然科學(xué)基金面上項(xiàng)目。積極參與高質(zhì)量人才如碩士生、博士生、博士后的培養(yǎng)。陳教授與中國學(xué)者有廣泛交流與合作,曾入選山西省“百人計(jì)劃”。

 

摘要:Taking into account the effect of antigenicity, we propose and analyze a conceptual model for the tumor-immune interaction. The model is described by a system of two ordinary differential equations. Though simple, the model can have complicated dynamical behaviors. Besides the tumor-free equilibrium, there can be at most three tumor-present equilibria. The tumor-present equilibrium can be a saddle or stable node/focus. Sufficient conditions on the nonexistence of nonconstant periodic solutions are provided. Bifurcation analysis including Hopf bifurcation and Bogdanov-Takens bifurcation is carried out. The theoretical results are supported by numerical simulations. Numerical simulations reveal the complexity of the dynamical behaviors of the model, which includes the subcritical/supercritical Hopf bifurcation, homoclinic bifurcation, saddle-node bifurcation at a nonhyperbolic periodic orbit, the appearance of two limit cycles with a singular closed orbit, and so on. Some biological implications of the theoretical results and numerical simulations are also provided.