報(bào)告承辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報(bào)告題目:截?cái)嗖此煞植嫉木祷貧w模型及其推廣
報(bào)告內(nèi)容:Zero-truncated count data (e.g., days of staying in hospital; survival weeks of female patients with breast cancer) often arise in various fields such as medical studies. To model such data, the zero-truncated Poisson (ZTP) distribution is commonly utilized to investigate the relationship between the response counts and a set of covariates. For existing ZTP regression models, it is very hard to explain the regression coefficients β or it is quite difficult to perform a constrained optimization to calculate the maximum likelihood estimates (MLEs) of β. This paper aims to introduce a new mean regression model for the ZTP distribution with a clear interpretation about the regression coefficients. Because of a challenge that the original Poisson mean parameter cannot be expressed explicitly by the ZTP mean parameter , an embedded Newton-Raphson algorithm is developed to calculate the MLEs of regression coefficients. The construction of bootstrap confidence intervals is presented and three hypothesis tests (i.e., the likelihood ratio test, the Wald test and the score test) are considered. Furthermore, the ZTP mean regression model is generalized to the mean regression model for the k-truncated Poisson distribution. Simulation studies are conducted and two real data are analyzed to illustrate the proposed model and methods.
報(bào)告人姓名:田國梁
報(bào)告人所在單位:南方科技大學(xué)統(tǒng)計(jì)與數(shù)據(jù)科學(xué)系
報(bào)告人職稱/職務(wù)及學(xué)術(shù)頭銜:教授,博士生導(dǎo)師
報(bào)告時(shí)間:2021年10月29日周五上午10:00-11:00
報(bào)告地點(diǎn):通訊會(huì)議,會(huì)議ID:776 441 138
報(bào)告人簡介:田國梁博士曾在美國馬里蘭大學(xué)從事醫(yī)學(xué)統(tǒng)計(jì)研究六年, 在香港大學(xué)統(tǒng)計(jì)與精算學(xué)系任副教授八年, 從2016年6月至今在南方科技大學(xué)統(tǒng)計(jì)與數(shù)據(jù)科學(xué)系任教授、博士生導(dǎo)師、副系主任。他目前的研究方向?yàn)?0, 1) 區(qū)間上連續(xù)數(shù)據(jù)以及成份數(shù)據(jù)的統(tǒng)計(jì)分析、多元零膨脹計(jì)次數(shù)據(jù)分析, 在國外發(fā)表140篇SCI論文、出版3本英文專著、在科學(xué)出版社出版英文教材1本。他是四個(gè)國際統(tǒng)計(jì)期刊的副主編。主持國自然面上項(xiàng)目二項(xiàng)、參加國自然重點(diǎn)項(xiàng)目并主持深圳市穩(wěn)定支持面上項(xiàng)目各一項(xiàng)。