報告承辦單位: 數(shù)學(xué)與統(tǒng)計學(xué)院
報告題目: Solving nonlinear delay-differential-algebraic equation with singular perturbation via block boundary value methods
(具奇異攝動非線性延遲微分代數(shù)方程的塊邊值方法)
報告人姓名: 顏小強(qiáng)
報告人所在單位: 國防科技大學(xué)文理學(xué)院
報告人職稱/職務(wù)及學(xué)術(shù)頭銜: 博士、博士后
報告時間: 2021年10月28日(星期四)下午15:00-16:00
報告地點(diǎn): 云塘校區(qū)理科樓:A419
報告人簡介: 顏小強(qiáng),2015年6月獲得長沙理工大學(xué)理學(xué)學(xué)士學(xué)位,后保研至華中科技大學(xué)進(jìn)行碩博連讀,于2020年6月獲得計算數(shù)學(xué)博士學(xué)位,后入站國防科技大學(xué)文理學(xué)院數(shù)學(xué)系博士后科研流動站。主要從事泛函微分方程數(shù)值解、保能量邊值方法方面的研究工作,目前主持湖南省優(yōu)秀博士后創(chuàng)新人才項(xiàng)目,在《Numerical Algorithms》、《Numerical Methods for Partial Differential Equations》、《Journal of Computational and Applied Mathematics》等期刊發(fā)表sci論文數(shù)篇,此外,曾榮獲全國大學(xué)生和全國研究生數(shù)學(xué)建模競賽國家一等獎等獎項(xiàng),并入選了第一屆阿里巴巴全球數(shù)學(xué)競賽總決賽.
報告摘要:Block boundary value methods (BBVMs) are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation (DDAESP). It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP. Besides, whenever the classic Lipschitz conditions are satisfied, the extended BBVMs are preconsistent and $p$th order consistent. Moreover, through some numerical examples, the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.